Начинается...

Система диспетчеризации электроснабжения Комсомольского НПЗ

Система диспетчеризации электроснабжения Комсомольского НПЗ

К. С. ТРОФИМОВ – инженер ЗАО «НПФ «ЭНЕРГОСОЮЗ»

Одним из способов повышения надежности электроснабжения является внедрение современной системы диспетчеризации. Такая система позволяет в реальном времени отслеживать режимы работы системы, своевременно фиксировать изменения режима, предотвращать перегрузки, оптимизировать расход энергоресурсов, быстро реагировать на нарушения в работе и максимально точно устанавливать причину технологических нарушений.

В статье пойдет речь о создании системы диспетчерского управления (СДУ) на Комсомольском нефтеперерабатывающем заводе компании «Роснефть».

Комсомольский НПЗ располагается в г. Комсомольск-на-Амуре, занимая территорию около 2 км2. Мощность завода позволяет перерабатывать до 8 млн тонн нефти в год. Завод является одним из основных поставщиков нефтепродуктов на рынок Дальнего Востока.

Предприятие обеспечивается электроэнергией от четырех линий 110 кВ. На территории завода расположены две главные понизительные трансформаторные подстанции (ГПП) 110/6 кВ (НПЗ-1 и НПЗ-2), около десяти распределительных подстанций (РТП) 6 кВ и более двух десятков трансформаторных подстанций (ТП), обеспечивающих питание 0,4 кВ. Территориальная рассредоточенность электрохозяйства соответствует размерам самого предприятия. Длины кабельных линий между отдельными подстанциями достигают нескольких сотен метров. В общей сложности распредустройства обеспечивают подключение нескольких сотен фидеров, большинство из которых оборудовано микропроцессорными устройствами защиты.

Столь масштабная система не может работать без централизованного управления, поэтому на предприятии в службе главного энергетика существует диспетчерская служба, круглосуточно следящая за работой энергохозяйства.

Однако до внедрения системы диспетчеризации дежурная смена сталкивалась с рядом проблем. На диспетчерском пункте был установлен мнемощит (рис. 1), на который выводилась информация только о положении коммутационных аппаратов основных присоединений, без какой-либо дополнительной информации. Сообщения о перебоях электроснабжения остальных потребителей поступали, как правило, по телефону от дежурных соответствующих цехов. После этого дежурный электромонтер пешком или на служебном транспорте прибывал на РТП, где произошло нарушение, и приступал к действиям по восстановлению схемы. Причины перебоев устанавливались по визуальной индикации устройств защиты, которая дает очень ограниченное количество информации. Отсутствие автоматической привязки к единому времени всех устройств системы затрудняло определение последовательности развития аварий. Дополнительную сложность эксплуатационным службам добавляло то, что разные распределительные устройства строились в разное время с использованием оборудования разных производителей. Все это приводило к довольно длительным простоям, а неточности в определении причин повышали вероятность повторных аварий.

Мнемощит диспетчерской службы до реконструкции

Рис. 1. Мнемощит диспетчерской службы до реконструкции

Трудности были и со сбором информации о текущих режимах работы. Данные собирались вручную, путем ежедневных обходов. Дежурные фиксировали показания щитовых приборов и счетчиков технического учета электроэнергии, и на основании собранных данных принималось решение о необходимости принятия каких-либо мер по изменению режимов работы и уставок РЗА.

Сам мнемощит был реализован достаточно простым образом – лампы сигнализации подключались кабелем напрямую к сухим контактам положения коммутационных аппаратов. Такое решение при всей простоте не являлось достаточно надежным, из-за длины линий связи и большого количества промежуточных контактов. В результате, большую часть времени мнемощит не был полностью исправен. Кроме того, такой подход крайне затруднял, либо делал невозможным вывод дополнительной аналоговой информации – величин токов или мощностей по присоединениям.

Для исправления всех этих недостатков и замечаний в 2013 году руководство завода приняло решение о внедрении новых, оперативных средств диагностики и управления энергохозяйством и создании современной единой системы диспетчеризации. Работа в этом направлении велась поэтапно и на всех этапах создания СДУ работы выполняла «Научно-производственная фирма «ЭНЕРГОСОЮЗ».

ЗАО «НПФ «ЭНЕРГОСОЮЗ» – инжиниринговая компания, располагается в Санкт-Петербурге, c 1990 года специализируется на разработке, производстве и внедрении средств для автоматизации объектов электроэнергетики.

Сотрудничество Комсомольского НПЗ и компании НПФ «ЭНЕРГОСОЮЗ» началось в 2000 году, когда на НПЗ-1, обеспечивающей электропитание завода от двух линий 110 кВ, была установлена система регистрации аварийных событий «НЕВА» производства НПФ «ЭНЕРГОСОЮЗ».

Данная система состояла из регистратора и автоматизированного рабочего места (АРМ) дежурного, на котором просматривались аварийные осциллограммы и отображалась информация о текущем положении коммутационных аппаратов и значения токов и напряжений. Система позволила в реальном масштабе времени отслеживать изменение текущих нагрузок по основным потребителям, а также, вести подробную запись аварий: осциллограммы токов и напряжений (64 канала) и последовательность срабатывания всех механизмов защит и автоматики с точностью до 1 мс (до 240 сигналов). Это существенно упростило выяснение причин аварий и позволило принимать необходимые меры по предотвращению повторения аварийных ситуаций. Кроме того, наличие осциллограмм позволило аргументированно отстаивать позицию в спорах с энергоснабжающей организацией.

К 2013 году было завершено строительство и ввод новой трансформаторной подстанции НПЗ-2 для подключения к двум новым линиям 110 кВ. В рамках этого проекта было проведено объединение существующей системы РАС НПЗ-1 и новой системы НПЗ-2, и реализована отказоустойчивая схема с применением двух серверов с горячим резервированием. На этапе проектирования было принято решение, что система «НЕВА», будет использоваться не только как регистратор аварийных событий, но и как система дистанционного управления распредустройствами.

Примененные решения позволили собирать информацию со всех микропроцессорных устройств защиты как КРУЭ-110 кВ, так и КРУ 6 кВ на одном автоматизированном рабочем месте (АРМ) (рис. 3), и с этого же рабочего места управлять всеми коммутационными аппаратами.

В ходе выполнения данных работ в службе главного энергетика были окончательно сформированы требования к системе диспетчеризации всего энергохозяйства завода. Наличие уже работающей системы управления ГПП повлияло на выбор компании для реализации проекта, так как использование уже существующей инфраструктуры и оборудования упростило и удешевило реализацию. Предполагалось серьезное развитие существующей системы – предстояло собрать полную информацию о работе десятка распределительных трансформаторных подстанций. Количество осциллографируемых сигналов с более чем 300 ячеек на всех распредустройствах превысило 2000. В систему должны были быть интегрированы более 200 микропроцессорных терминалов защит, а количество сигналов телеуправления достигло 300. Все это потребовало установки специализированного программного обеспечения (ПО) – полноценной SCADA-системы (от англ. Supervisory Control And Data Acquisition – диспетчерское управление и сбор данных). В качестве такой системы была выбрана «СКАДА-НЕВА» разработки НПФ «ЭНЕРГОСОЮЗ».

Для обеспечения непрерывности электроснабжения предприятия выполнение работ было разбито на 18 последовательных этапов. Был составлен график работ, подробный проект, список устанавливаемого оборудования, а также оборудования, которое предстояло интегрировать в систему диспетчерского управления.

В процессе реализации СДУ было установлено более 30 шкафов с контрольным и коммуникационным оборудованием, смонтировано 3,5 км контрольных кабелей и проложено 2 км оптоволоконного кабеля, в дополнение к существующим каналам связи. Были решены проблемы совместимости с устаревшим и уже снятым с производства микропроцессорным оборудованием. Помимо этого, уже в ходе работ в проект добавлялись новые задачи. Например, при реконструкции системы освещения завода, которая производилась в это же время, было решено реализовать управление освещением средствами строящейся системы диспетчерского управления. В результате суммарное количество сигналов, обрабатываемых SCADA-системой, достигло 20000.

Установленный программно-технический комплекс (ПТК) «НЕВА» аппаратно состоит из регистраторов аварийных событий «НЕВА-РАС», каналов связи, коммутационного оборудования, преобразователей последовательных интерфейсов, сервера точного времени и двух серверов обработки и хранения данных с установленным программным обеспечением «СКАДА-НЕВА» (рис. 2).

Рис. 2. Структурная схема СДУ на базе ПТК «НЕВА»

«НЕВА-РАС», установленные на каждой трансформаторной подстанции, ведут сбор текущей информации о состоянии ТП, протекающих нагрузках и положении коммутационных аппаратов, производят запись аварийных осциллограмм при появлении признаков аварии, осуществляют передачу данных на верхний уровень и выдают команды на исполнительные механизмы распредустройства.

Одновременно с микропроцессорных устройств РЗА по шине RS-485 собираются данные нормального режима и записи журналов срабатывания защит. Для подключения терминалов защит к общей сети использованы преобразователи интерфейсов RS 485/Ethernet. Количество аналоговых сигналов, передаваемых всеми устройствами РЗА, больше, чем «НЕВА-РАС», но эти данные не подходят для записи аварийных процессов и используются для записи в архив нормального режима и отображения на рабочих местах пользователей.

Команды управления могут передаваться, как прямо на устройства РЗА по шине RS-485, так и через выходные реле телеуправления, установленные в «НЕВА-РАС». Конструктивно, второй способ несколько сложнее, но он позволяет управлять практически любыми механизмами, в том числе не оборудованные микропроцессорными устройствами. Кроме того, встроенный в регистраторы аварийных событий интерпретатор позволяет выполнять дополнительные алгоритмы блокировки.

АРМ диспетчера и видеопанель

Рис. 3. АРМ диспетчера и видеопанель

В таких алгоритмах могут учитываться команды пользователя, текущие аналоговые измерения и телесигналы, собираемые «НЕВА-РАС». В реализуемой системе диспетчеризации используется управление, как через микропроцессорные устройства защиты, так и через регистраторы аварийных событий в зависимости от контролируемого оборудования и необходимости реализации дополнительных блокировок.

Связь всех компонентов системы обеспечивается по сети Ethernet, построенной с использованием сетевых коммутаторов промышленного исполнения с поддержкой технологий избыточности.

В состав программного обеспечения «СКАДА-НЕВА» СДУ входят необходимые компоненты для сбора, хранения, просмотра и анализа информации о состоянии электрооборудования. В первую очередь, это программа «Мнемосхема», которая выполняет функцию мнемощита – отображает текущее состояние коммутационных аппаратов и множество других параметров: как измеренных, так и рассчитанных на их основе.

Гибкая система видеокадров позволяет просматривать информацию с различной степенью детализации: от общей схемы завода, с перечислением основных параметров (аналогично старому мнемощиту) до отдельных ячеек распредустройств с отображением подробной информации по данному присоединению (рис. 4). Также непосредственно из программы «Мнемосхема» производится управление оборудованием, с контролем выполнения команд. В результате, в помещении диспетчерского пункта завода был демонтирован старый мнемощит, а на его месте была смонтирована видеопанель, подключенная к АРМ-у дежурного. Несмотря на относительно большие размеры видеопанели, для удобства персонала в будущем предполагается ее расширение, путем объединения нескольких аналогичных панелей в одну видеостену.

Детализация видеокадров от общей схемы завода до ячеек распредустройств

Рис. 4. Детализация видеокадров от общей схемы завода до ячеек распредустройств

Все события, происходящие в энергохозяйстве, автоматически фиксируются в журнале событий. В данный журнал с точностью до 1 мс заносятся данные о срабатывании защит, изменении состояния электрооборудования, действиях персонала и работе самого программного комплекса. Программа просмотра журнала имеет систему фильтров, используя которые можно анализировать события, например, за определенный период времени или связанные с конкретным оборудованием. Предусмотрена цветовая и звуковая сигнализация, позволяющая настраивать индивидуальные сообщения для отдельных сигналов или для целого класса событий.

Измеренные значения аналоговых сигналов записываются в базу данных программы «Самописец», пользовательский интерфейс которой также позволяет просматривать хранящиеся данные за любой период и выводить их на печать в виде графиков или в виде табличных значений. «Самописец» фиксирует данные «нормального режима», то есть текущие значения токов, напряжений и нагрузки с периодичностью от секунды, в зависимости от настроек. При этом, глубина хранения архивных значений ограничивается только аппаратными возможностями хранилища данных.

В случае срабатывания аварийной сигнализации, при выходе параметров энергосистемы за предусмотренные диапазоны или по команде оператора, запускается осциллографирование параметров. Записанные осциллограммы позволяют рассмотреть процессы, происходящие в системе, с разрешением в 1 мс. При этом цифровой осциллограф настроен таким образом, что записывает как непосредственно момент аварии, так и события до 5 секунд предшествующих срабатыванию, а также до 60 секунд после аварии. Это позволяет определить причину, подробно рассмотреть развитие аварии, оценить срабатывание устройств РЗА и последствия аварии.

Для просмотра и анализа записанных осциллограмм служит программа «Осциллограф», позволяющая по имеющимся записям измерять токи, напряжения, временные интервалы, строить векторные диаграммы, графики годографа сопротивлений, и производить другие действия, необходимые для анализа аварийных событий (рис. 5).

Сриншот программы «Осциллограф»

Рис. 5. Сриншот программы «Осциллограф»

Помимо этого, в составе комплекса имеются: подсистема точного времени, обеспечивающая синхронизацию времени всех компонентов системы от единого источника астрономического времени, и подсистема самоконтроля состояния, непрерывно оценивающая состояние оборудования, каналов связи и сигнализирующая в случае возникновения неполадок в самой системе «НЕВА».

Вся собранная информация поступает на два сервера, работающих параллельно, что обеспечивает гарантированную бесперебойную работу системы в случае отказа одного из серверов комплекса. Для защиты системы от несанкционированного вмешательства предусмотрена система авторизации пользователей с разграничением прав на выполнение тех или иных действий по управлению энергохозяйством или изменению настроек СДУ. Для пользователей предусмотрены автоматизированные рабочие места, которые автоматически выбирают активный (работающий в данный момент) сервер и позволяют просматривать доступную информацию или выполнять действия в соответствии с назначенными правами.

Часть АРМ-ов предназначена исключительно для оперативного персонала, другая часть – для инженеров, занимающихся настройкой и обслуживанием самой SCADA-системы.

Естественно, что такая масштабная система требует определенной квалификации обслуживающего персонала. Поэтому параллельно работам по внедрению СДУ было проведено обучение группы специалистов завода с выдачей свидетельств, дающих право на обслуживание и эксплуатацию ПТК «НЕВА». В случае возникновения проблемы, с которой инженеры КНПЗ не смогут справиться самостоятельно, они всегда могут получить квалифицированную техническую поддержку от специалистов компании «ЭНЕРГОСОЮЗ», участвовавших в проектировании и внедрении данной системы, и имеющие многолетний опыт работы с аналогичными проектами. Кроме того, «ЭНЕРГОСОЮЗ» постоянно совершенствует функциональные возможности программного обеспечения в направлении анализа и систематизации данных о технологических нарушениях, происходящих на энергообъектах. Это позволяет выявить энергообъекты с наибольшим количеством технологических нарушений для принятия соответствующих управленческих решений, а также правильно спланировать ресурсы, выделяемые на техническое обслуживание, ремонт и восстановление основного электрооборудования энергообъектов.

На сегодняшний день на заводе «СКАДА-НЕВА» используется как основная система для интеграции других систем, связанных с энергоснабжением. Так, для удобства персонала, в SCADA-систему помимо управления освещением завода интегрированы данные коммерческого учета. Проектируется расширение системы на строящиеся трансформаторные подстанции для новой установки гидрокрекинга, а также рассматривается вопрос подключения управления системой отопления помещений.

Несмотря на большой объем работ, благодаря имеющемуся опыту и грамотной организации, работы были выполнены с опережением графика, и менее чем за год полномасштабная СДУ была введена в эксплуатацию. В результате – персонал завода получил мощный и эффективный инструмент для мониторинга и управления энергохозяйством.

Системы диспетчеризации на базе ПТК «НЕВА» успешно эксплуатируются на многих промышленных предприятиях, среди которых:

  • Хабаровский НПЗ;
  • Минудобрения;
  • Сильвинит;
  • Уралвагонзавод;
  • Сыктывкарский ЛПК и др.

 

ЗАО «НПФ «ЭНЕРГОСОЮЗ»
www.energosoyuz.spb.ru

Статья в формате pdf →

Читайте также:

ВЫПУСК 5/2023



Читать онлайн