Начинается...

Эффективная изоляция трапповой интрузии на Восточных блоках Среднеботуобинского НГКМ методом установки гипсоцементных мостов различной плотности в два этапа

Эффективная изоляция трапповой интрузии на Восточных блоках Среднеботуобинского НГКМ методом установки гипсоцементных мостов различной плотности в два этапа

Р. Ф. ШАКИРОВ – главный технолог ООО «ВОСТОЧНО-СИБИРСКАЯ ИНЖИНИРИНГОВАЯ КОМПАНИЯ»
А. К. МЕЛЬНИК – генеральный директор ООО «ВОСТОЧНО-СИБИРСКАЯ ИНЖИНИРИНГОВАЯ КОМПАНИЯ»
Ю. В. МЕДВЕДЕВ – руководитель центра технологий применения продуктов ЗАО «Самарский гипсовый комбинат»
А. В. САМОЛОВИЧ – директор Департамента отраслевых решений ЗАО «Самарский гипсовый комбинат»

Среднеботуобинское нефтегазоконденсатное месторождение (НГКМ) открыто в 1970 году, оно находится на территории Мирнинского района Республики Саха (Якутия), в 130 км на юго-запад от города Мирного и в 140 км к северо-западу от города Ленска. По основным тектоническим элементам его разделяют на три крупных блока: Центральный блок, Северный блок и Восточные блоки. Месторождение состоит из четырех лицензионных участков. В 2019 году начата промышленная эксплуатация Восточных блоков.

Главными особенностями инженерно-геологических условий Восточных блоков Среднеботуобинского НГКМ является повсеместное распространение многолетнемерзлых пород (ММП), залегающих до глубины 400 м, и поглощающих интервалов, вызванных высокотрещиноватой трапповой интрузией (мощность 150-200 м). Строительство скважины в интервалах под направление и кондуктор на рассматриваемом месторождении сопровождается наличием зон ММП и требует применение специальных цементных растворов на основе Тампонажного гипса, позволяющих цементному камню выдерживать циклические процессы замораживания и оттаивания, и исключающие возможность растепления скважины во время строительства последующих секций, что в свою очередь позволяет сократить время ОЗЦ до 4-6 часов.

Как правило, возникающие осложнения на данном периоде строительства скважины влекут за собой значительные материально-технические и временные затраты (рост непроизводительного времени), крайне низкое качество крепления осложненных интервалов в скважине и потери технологических жидкостей, вызванные наличием серьезных поглощающих интервалов.

Строительство скважин в интервале направления и кондуктора ведется на гипсоцементных смесях способных эффективно решать проблему качественного цементирования в зонах ММП. Технические характеристики представлены в таблице 1.

Таблица 1. Физико-химические свойства гипсоцементных смесей, применяемых при креплении направления и кондуктора на скважинах Восточных блоков Среднеботуобинского НГКМ

Применение подобных Ø245 Ø178 Ø114 тампонажных материалов позволяет исключить растепление многолетнемерзлых пород, приводящее к нарушению целостности сцепления системы «цементный камень – порода» и, как следствие, последующее обрушение верхних интервалов. Оптимальное время ОЗЦ, достаточное для последующего безопасного оперативного продолжения бурения (тампонажный камень за это время не замерзает, а схватывается и твердеет). Конструкция типовой скважины представлена на рис. 1.

Рис. 1. Конструкция скважины

При проведении анализа качества цементирования направления Ø324 мм и кондуктора Ø245 мм с помощью гипсоцементных тампонажных смесей также удалось решить следующие отклонения:

  • отсутствие сцепления цементного камня с обсадной колонной и стенками скважины;
  • разрушение цементного камня в процессе эксплуатации скважины.

С начала разбуривания Среднеботуобинского НГКМ был проведен ряд опытных работ по решению сложившейся проблемы, связанной с поглощением промывочной жидкости в условиях трапповой интрузии:

  • применение стандартных цементных растворов на основе CaCl2;
  • система ВУС + тампонажная смесь;
  • система ВУС + соляроцементно-бентонитовая смесь.

Ни один из вышеперечисленных способов не обеспечивал постоянных положительных результатов при ликвидации поглощений в условиях трапповой интрузии при низких пластовых температурах.

Опыт строительства скважин Среднеботуобинского НГКМ показал, что для повышения качества крепления скважин в интервалах поглощений технологических жидкостей, вызванных наличием трапповой интрузии, необходимо применять тампонажные смеси со сравнительно короткими сроками ОЗЦ (4-6 часов), высокой адгезионной способностью материала и достаточными прочностными показателями, облегчающими процесс разбуривания тампонажного камня.

Исходя из этого, были разработаны рецептуры гипсоцементных составов, которые после ряда опытно-промышленных испытаний положительно себя зарекомендовали при изоляции зон подверженных трапповой интрузией (интервал 850-1000 м). Технические характеристики гипсоцементных смесей приведены в таблице 2.

Таблица 2. Физико-химические свойства гипсоцементных смесей, применяемых при изоляции интервалов трапповой интрузии на скважинах Восточных блоков Среднеботуобинского НГКМ

Технология ликвидации зон поглощений в траппах выглядит следующим образом:

⬛ Первым этапом производится установка гипсоцементного моста пониженной плотности (1,60 г/см3), имеющего в своем составе инертный наполнитель (АСПМ – алюмосиликатные полые микросферы) в концентрации от 20% до 35% по весу цемента, который за счет своих размеров (500 мкм) выполняет роль кольматанта, создавая первичный каркас, исключающий процесс потери устанавливаемого моста, а также выполняющего роль понизителя плотности гипсоцементного раствора для уменьшения гидростатическое давления, способствующего усилению поглощения;

⬛ Второй этап предполагает установку на первую пачку гипсоцементного моста нормальной плотности (1,87 г/см3) мощностью около 200 м, который обладает достаточной прочностью для укрепления стенок скважины после выдержки минимального времени ОЗЦ и выполняет функцию задавливания первого (нижнего) облегченного гипсоцементного моста непосредственно в зону поглощения с целью усиления эффекта кольматации. Между установкой первого и второго этапа гипсоцементных мостов время ОЗЦ не требуется. За резкий набор первичной прочности при минимальном времени ОЗЦ, препятствующем полной или частичной потери изоляционного моста в зоне поглощения, отвечает Тампонажный гипс.

Выводы

В ходе применения данного подхода при креплении скважин и изоляции поглощений на Восточных блоках Среднеботуобинском НГКМ получены следующие результаты:

Применение методики установки гипсоцементных мостов различной плотности позволило эффективно решить задачу изоляции поглощающих интервалов, вызванных трапповой интрузией;

Сформированы точные требования к характеристикам тампонажных смесей для изоляции поглощающих горизонтов в подобных скважинных условиях (плотность, время загустевания, сроки схватывания, фильтрация, набор прочности и т. д.);

На основе обозначенных требований разработана линейка собственных гипсоцементных тампонажных смесей с различными плотностями от 1,6 до 1,89 г/см3 и временем загустевания от 150 до 200 мин., оптимально решающими вопрос ликвидации поглощений и крепления скважин в зонах многолетнемерзлых пород;

Выбрана оптимальная технология приготовления и доставки изоляционного материала, максимально снижающая риски некачественной изоляции;

Повышено качество крепления эксплуатационной колонны в интервале облегченного цементного раствора (ОЦР) за счет ликвидации (надежной кольматации гипсоцементными мостами) поглощений в зоне трапповой интрузии;

Сокращено время, ранее затрачиваемое на проведение операций, проводимых с целью изоляции зон поглощений и крепления скважин в условиях многолетнемерзлых пород, способствующее достижению положительного экономического эффекта;

Данная технология позволяет полностью исключить необходимость проведения «встречного» цементирования при потере циркуляции, улучшая общее качество крепления в интервале ОЦР, обеспечивая подъем его уровня до устья и отсутствия проблем с негерметичностью МКП 245*178 мм.

Литература:

  1. Е. А Гладков, А. А. Ширибон, Е. Г. Карпова, М. 2015. Пути решения проблем, возникающих при бурении скважин в Восточной Сибири. Бурение и Нефть, №4: 42–45.
  2. А. Т. Горский, Тюмень. 1969. Формирование цементного камня в условиях одновременного воздействия положительной и отрицательной температур. Нефть и газ Тюмени, №3: 22–26.
  3. В. В. Быков, С. А. Палеев, Ю. В. Медведев, 2016. Повышение качества цементирования направлений и кондукторов в условиях многолетнемерзлых пород на месторождениях в Восточной Сибири. Статья SPE № 181937. Конференция SPE, Москва, 24–26 октября.
  4. Ю. С. Угольников, 2016. Комплекс технологических решений для изоляции интервалов поглощений технологических жидкостей. Статья SPE № 181950. Конференция SPE, Москва, 24–26 октября.

Статья в формате pdf →

443052, Самара,
ул. Береговая, д. 9А
☎ +7 (846) 277-79-97
info@samaragips.ru
samaragips.ru


Читайте также:

ВЫПУСК 1/2024



Читать онлайн